News

Bisnis

Super Skor

Sport

Seleb

Lifestyle

Travel

Lifestyle

Tribunners

Video

Tribunners

Kilas Kementerian

Images

Kunci Jawaban

Kunci Jawaban Matematika Kelas 7 Halaman 270 271 272 Semester 2: Hitung Keliling dan Luas Segitiga

Penulis: Muhammad Alvian Fakka
Editor: Sri Juliati
AA

Text Sizes

Medium

Large

Larger

Soal buku Matematika Kelas 7 semester 2 halaman 270 - Kunci jawaban Matematika Kelas 7 semester 2 halaman 270 271 272 soal Ayo Kita Berlatih 8.6 nomor 1-10 menghitung keliling dan luas segitiga.

Jika luas segitiga tersebut 160 cm2, maka tingginya adalah ...

a. 4 cm
b. 16 cm
c. 20 cm
d. 32 cm

Jawaban:

Luas alas = 1/2 x panjang alas x tinggi

160 = 1/2 x 5a x 4a

10a2 = 160

a2 = 160/10

a = √16

a = 4 cm

Alas = 5a = 5 x 4 = 20 cm

Tinggi = 4a = 4 x 4 = 16 cm

Jadi, tinggi segitiga adalah B. 16 cm.

Soal nomor 5

Sebuah taman berbentuk persegi panjang dengan ukuran panjang 25 m dan lebar 20 m.

Didalam taman terdapat pot bunga yang berbentuk 2 segitiga siku-siku yang kongruen dengan ukuran panjang sisi sikusikunya 8 m dan 6 m. dan sisanya ditanami rumput.

Hitunglah luas tanaman rumput tersebut?

Jawaban:

Luas rumput = luas taman - (2 x luas pot bunga segitiga )

= (p x l ) - ( 2 x 1/2 x alas x tinggi )

= (25 x 20) - ( 2 x 1/2 x 8 x 6 )

= 500 - 48

= 452 cm2

Jadi, luas tanaman rumput adalah 452 cm2.

Baca juga: Kunci Jawaban Matematika Kelas 7 Halaman 254 255 Semester 2, Memahami Jenis dan Sifat Segitiga

Soal nomor 6

Suci mempunyai satu lembar karton bermotif berbentuk persegi dengan panjang sisinya 25 cm.

Suci akan membuat mainan yang berbentuk seperti pada gambar di bawah.

Berapakah luas karton yang tidak terpakai?

Jawaban:

Luas karton tidak terpakai terpakai = luas karton - luas segitiga

= (s x s) - (1/2 x s x s)
= (25 x 25) - (1/2 x 25 x 25)
= 625 - 625/2
= 312,5 cm2

Jadi, luas karton yang tidak terpakai adalah 312,5 cm2.

Soal nomor 7

Hitunglah luas bangun PQRS pada gambar!

Jawab:

Luas PQRS = Luas PTRS - Luas PQRT

= (1/2 x PR x ST) - (1/2 x PR x QT)

= (1/2 x (4 + 6) x (h+8)) - (1/2 x (4+6) x h)

= (5h + 40) - 5h

= 40 cm2

Jadi, luas PQRS adalah 40 cm2.

Soal nomor 8

Perhatikan daerah segitiga I dan II. Bandingkan luas I dan luas II. Jelaskan

Jawaban:

Bandingkan luas I dan luas II adalah 1 : 1

Karena memiliki panjang alas dan tinggi yang sama.

Soal nomor 9

Jika panjang AB = 16 cm, maka luas bangun ABCDE adalah ....

a. 164 cm2
b. 190 cm2
c. 229 cm2
d. 250 cm2

Jawaban:

Tinggi Segitiga di atas kotak = √(DC2 - (1/2 x EC)2)

= √(132 - (1/2 x 10)2)
= √(169 - 25)
= √144
= 12 cm

Luas ABCDE = (2 x luas segitiga kecil) + luas kotak + luas segitiga besar

= (2 x 1/2 x 3 x 13) + (13 x 10) + (1/2 x 10 x 12)
= 39 + 130 + 60
= 229 cm2

Jadi, luas segitiga ABCDE adalah C. 229 cm2.

Soal nomor 10

Pada segitiga ABC yang tumpul di C, titik M adalah titik tengah AB.

Melalui C dibuat garis tegak lurus pada BC yang memotong AB di titik E.

Dari M, ditarik garis memotong BC yang tegak lurus di D.

Jika luas segitiga ABC adalah 54 satuan luas.

Maka luas segitiga BED adalah...

Jawaban:

Luas segitiga BED = 1/2 x luas ABC
= 1/2 x 54
= 27 satuan

Jadi, luas segitiga BED adalah 27.

Baca juga: Kunci Jawaban Matematika Kelas 7 Halaman 289 290 Semester 2 Beserta Pembahasan, Uji Kompetensi 8

*) Disclaimer: Artikel ini hanya ditujukan kepada orangtua untuk memandu proses belajar anak.

Sebelum melihat kunci jawaban, siswa harus terlebih dahulu menjawabnya sendiri, setelah itu gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa.

(Tribunnews.com/ Muhammad Alvian Fakka)

Dapatkan Berita Pilihan
di WhatsApp Anda

Berita Populer

Berita Terkini