News

Bisnis

Super Skor

Sport

Seleb

Lifestyle

Travel

Lifestyle

Tribunners

Video

Tribunners

Kilas Kementerian

Images

Kunci Jawaban

Kunci Jawaban Matematika Kelas 8 Semester 2 Halaman 40 41 42 K13: Ayo Kita Berlatih 6.4, Pythagoras

Penulis: Muhammad Alvian Fakka
Editor: Tiara Shelavie
AA

Text Sizes

Medium

Large

Larger

Soal buku Matematika Kelas 8 Semester 2 halaman 40 41 42 K13 - Kunci jawaban Matematika Kelas 8 Semester 2 halaman 40 41 42, Ayo Kita Berlatih 6.4, Bab 6 Teorema Pythagoras, Kurikulum 2013.

Jadi luas persegi panjang KLMN adalah 16√3 cm².

6. Perhatikan gambar segitiga siku-siku ABC di bawah. Tentukan:

a. keliling segitiga ABC,
b. tentukan luas segitiga ABC.

Kunci jawaban:

Diketahui AD = 8 cm pada Δ ADC

Perhatikan Δ ADC siku-siku di D, ∠ CAD = 60° dan ∠ ACD = 30°

AC : AD = 2 : 1
AC : 8 = 2 : 1
AC = 8 × 2
AC = 16 cm

AD : CD = 1 : √3
8 : CD = 1 : √3
8 / CD = 1 / √3
CD = 8 × √3
CD = 8√3 cm

Perhatikan Δ BDC siku-siku di D, ∠ CBD = 30° dan ∠ DCB = 60°
Panjang BD

CD : BD = 1 : √3
8√3 : BD = 1 : √3
8√3 / BD = 1 / √3
BD = 8√3 × √3
BD = 8 × 3
BD = 24 cm

Panjang BC

CD : BC = 1 : 2
8√3 : BC = 1 : 2
8√3 / BC = 1 / 2
BC = 8√3 × 2
BC = 16√3 cm

a. Keliling segitiga ABC

Keliling Δ ABC = AD + BD + BC + AC
= 8 cm + 24 cm + 16√3 + 16 cm
= 48 cm + 16√3 cm
= 16 (3 + √3) cm

Jadi keliling segitiga ABC adalah 16 (3 + √3) cm

b. Menentukan luas segitiga ABC

Luas Δ ABC = 1/2 × AB × CD
= 1/2 × (8 + 24) cm × 8√3 cm
= 1/2 × 32 × 8√3 cm²
= 16 × 8√3 cm²
= 128√3 cm²

Jadi luas segitiga ABC adalah 128√3 cm²

7. Tentukan luas trapesium pada gambar.

Kunci jawaban:

30 derajat : 60 derajat : 90 derajat = 1 : √3 : 2

x =?
√3/2 = x/1
√3/2 = x

Mencari y

y =?
1/2 = y/1
1/2 = y

Mencari alas

√3/2 + √3/2 + 1
= √3 + 1

L = (jumlah sisi sejajar x t)/2
= ((1 + √3 + 1) x ½)/2
= ((√3 +2) x ½)/2
= (√3 + 2)/4
= 1/4√3 + 2/4
= 1/3√3 + 1/2

Jadi luasnya 1/3√3 + 1/2

8. Perhatikan gambar segitiga ABC di bawah ini. Diketahui ∠ABC = 90°, ∠CDB = 45°, ∠CAB = 30°, dan AD = 2 cm. Tentukan panjang BC.

Kunci jawaban:

Perbandingan sudut istimewa ΔBCD

∠CBD = 90°, ∠CDB = 45°, sehingga ∠BCD = 45°

CD : BC : BD = √2 : 1 : 1

BC = BD

Perbandingan sudut istimewa ΔABC

∠ABC = 90°, ∠CAB = 30°, sehingga ∠ACB = 60°

AC : BC : AB = 2 : 1 : √3

BC / AB = 1 / √3
BC / (AD + BD) = 1 / √3
BC / (2cm + BD) = 1 / √3
(√3)BC = 2cm + BD
(√3 - 1)BD = 2cm

BC = 2cm/(√3 - 1)
BC = 2cm/(√3 - 1) × (√3 + 1)/(√3 + 1)
BC = 2(√3 + 1)cm / (3 - 1)
BC = 2(√3 + 1)cm / 2
BC = (√3 + 1)cm

Jadi panjang BC adalah (√3 + 1)cm

9. Perhatikan balok ABCD.EFGH di samping. Jika besar ∠BCA = 60° , tentukan:

a. panjang AC,
b. luas bidang ACGE.

Kunci jawaban:

a. Perbandingan sudut istimewa ΔABC

∠BCA = 60°, ∠ABC = 90°, sehingga ∠BAC = 30°

AB : AC : BC = √3 : 2 : 1
AC : BC = 2 : 1
AC / 24dm = 2/1
AC = 48dm

b. BC = CG = 24dm

L ACGE = AC × CG
L ACGE = 48dm × 24dm
L ACGE = 1152dm²

10. Gambar di samping adalah jaringjaring piramida segitiga.

a. Berapakah panjang b?
b. Berapakah luas permukaan piramida?

Kunci jawaban:

a. Perbandingan sudut istimewa Δ siku-siku sama kaki

4cm : 4cm : b = 1 : 1 : √2
b : 4cm = √2 : 1
b = 4√2cm

b. Alas piramida adalah segitiga sama sisi yaitu b = 4√2cm, perbandingan sudut istimewa Δ setengah segitiga sama sisi.

4√2cm : 2√2cm : t = 2 : 1 : √3
t : 2√2cm = √3 : 1
t = 2√6cm

L piramida segitiga:
= L alas piramida + 3 L segitiga siku-siku
= (4√2cm × 2√6cm)/2 + 3 (4cm × 4cm)/2
= (8√3 + 24)cm²

*) Disclaimer: Artikel ini hanya ditujukan kepada orangtua untuk memandu proses belajar anak.

Sebelum melihat kunci jawaban, siswa harus terlebih dahulu menjawabnya sendiri, setelah itu gunakan artikel ini untuk mengoreksi hasil pekerjaan siswa.

(Tribunnews.com/ Muhammad Alvian Fakka)

Dapatkan Berita Pilihan
di WhatsApp Anda

Berita Populer

Berita Terkini