Contoh Soal SNBT 2023 Pengetahuan Kuantitatif, Dilengkapi Kunci Jawaban dan Pembahasan
Berikut contoh soal Pengetahuan Kuantitatif dalam Tes Potensi Skolastik (TPS) SBMPTN atau SNBT 2023. Dilengkapi dengan kunci jawaban dan pembahasan.
Penulis: Widya Lisfianti
Editor: Pravitri Retno W
Jawaban: B
Pembahasan:
Baca juga: Contoh Soal SNBT 2023 Literasi Bahasa Inggris, Dilengkapi Kunci Jawaban dan Pembahasan
9. Diketahui segitiga ABCD dengan ∠B = 30º.
Apakah segitiga ABC siku-siku?
Putuskan apakah pernyataan (1) dan (2) berikut cukup untuk menjawab pertanyaan tersebut.
∠A – ∠C = 20°.
∠C < ∠A.
A. Pernyataan (1) SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan (2) SAJA tidak cukup.
B. Pernyataan (2) SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan (1) SAJA tidak cukup.
C. Pernyataan (1) dan (2) cukup untuk menjawab pertanyaan, tetapi salah satu dari keduanya tidak cukup.
D. Pernyataan (1) atau pernyataan (2) SAJA sudah cukup untuk menjawab pertanyaan.
E. Pernyataan (1) dan pernyataan (2) tidak cukup untuk menjawab pertanyaan.
Jawaban: A
Pembahasan:
∠A + ∠C = 180° – 30° = 150°
∠A – ∠C = 20°
Karena dua persamaan tersebut merupakan SPL yang konsisten, pertanyaan dapat dijawab. Dengan demikian pernyataan (1) cukup digunakan untuk menjawab pertanyaan
Karena ∠A + ∠C = 150°, pernyataan (2) tidak cukup untuk memutuskan apakah ∠A siku-siku.
10. Diketahui b = 2 x c dan b – d = 3.
Apakah d bilangan prima ?
Putuskan apakah pernyataan (1) dan (2) berikut cukup untuk menjawab pertanyaan tersebut.
d = 2c – 3.
b – 2c = 0.
A. Pernyataan (1) SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan (2) SAJA tidak cukup.
B. Pernyataan (2) SAJA cukup untuk menjawab pertanyaan, tetapi pernyataan (1) SAJA tidak cukup.
C. Pernyataan (1) dan (2) cukup untuk menjawab pertanyaan, tetapi salah satu dari keduanya tidak cukup.
D. Pernyataan (1) atau pernyataan (2) SAJA sudah cukup untuk menjawab pertanyaan.
E. Pernyataan (1) dan pernyataan (2) tidak cukup untuk menjawab pertanyaan.
Jawaban: E
Pembahasan: Pernyataan (1) diperoleh dari b = 2 x c dan b – d = 3.
Pernyataan (2) diperoleh dari b = 2 x c.
Karena sistem tersebut terdiri dari 2 persamaan yang memuat 3 variabel, serta pernyataan (1) dan (2) diperoleh dari b = 2 x c dan b – d = 3, disimpulkan pernyataan (1) dan (2) tidak cukup untuk menjawab pertanyaan.
(Tribunnews.com, Widya)
Kirim Komentar
Isi komentar sepenuhnya adalah tanggung jawab pengguna dan diatur dalam UU ITE.